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Measures with Infinite Lyapunov Exponents for the 
Periodic Lorentz Gas 
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We study invariant measures for the periodic Lorentz gas which are supported 
on the set of points with infinite Lyapunov exponents. We construct examples 
of such measures which are measures of maximal entropy and ones which are 
not. 
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1. I N T R O D U C T I O N  

F o r  a given dynamica l  system a measure  of  max ima l  en t ropy  captures  
in format ion  abou t  the "mos t  chaot ic"  par t  of  the dynamics .  M o r e  precisely,  
a measure  of  max ima l  en t ropy  is a p robab i l i t y  measure  invar iant  under  the 
dynamics  whose metr ic  en t ropy  is equal  to the topo log ica l  en t ropy  of  the 
given system. F o r  systems with finite topo log ica l  en t ropy  much  is known  
abou t  measures  of  max ima l  en t ropy.  Ax iom A di f feomorphisms have a 
unique measure  of  max ima l  en t ropy  on each topologica l ly  t ransi t ive com-  
ponent  and  this measure  is Markov ian .  "1~ F o r  systems with  infinite 
topologica l  en t ropy  noth ing  in this d i rec t ion  has  been k n o w n  up to now, 
a l though the r0ain tool  used to derive the above  results,  M a r k o v  par t i t ions ,  
has been avai lable  for some time. ~41 
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In ref. 6 it was shown that the billiard ball map for the periodic 
Lorentz gas has infinite topological entropy. In this article we study the set 
of points with infinite Lyapunov exponents. Using the cell structure 
developed in refs. 4 and 10, we construct an ergodic invariant probability 
measure with infinite topological entropy supported on this set. Since the 
topological entropy is infinite, this is a measure of maximal entropy. From 
the construction it is clear that many such measures can coexist on a single 
component  of topological transitivity. We also construct an ergodic 
invariant probability measure with finite entropy which is supported on 
this set, showing that infinite exponents do not necessarily lead to infinite 
entropy. 

2. CELL S T R U C T U R E  A N D  L Y A P U N O V  E X P O N E N T S  

We study a periodic Lorentz gas on a plane. For simplicity, we assume 
that every fundamental domain of this gas contains a single round scatterer. 
Let the fundamental domain be a unit square and the scatterer be the circle 
of radius r > 0 centered at the origin. Thus we get a periodic array of circles 
of radius r centered at sites of the integral lattice. A pointlike particle moves 
freely at unit speed between the circles and reflects elastically off them. The 
circles are immovable and rigid. 

We assume that r <  1/2, so that the moving particle is not trapped 
between four neighboring circles. Then the particle can move freely without 
collisions indefinitely; such Lorentz gases are said to have 17o horizon. 

Since the gas is periodic, we can consider a fundamental domain: the 
configuration space Q of this system is the unit torus 0 ~< ql,  q_, < 1 without 
the disc q~+q~_<~r'- (mod 1). The phase space is M = Q x S  ~. This is a 
billiard system of Sinai type (with dispersing boundary).  The billiard ball 
map T is defined on the surface 

M, = {(q, t , ) eM:  qeOQ and (v, n)>~0} 

where n is the inward unit normal vector to the boundary OQ of the 
domain Q. The map T is simply the first return map on the surface M1, i.e. 
it sends the particle at a reflection point to its next reflection. We introduce 
the coordinates (s, ~0) on M t , where s is the arc length on the circle c~Q and 
~0 is the angle between the vector v and the above normal vector n to the 
circle, 0 ~<s < 2nr and - n / 2  <~ ~o <~ n/2. Since s is a cyclic coordinate, MI is 
a cylinder. The map T on MI preserves the measure dv= cv cos ~o ds dq~, 
where c,, = (2n r ) - i  is the normalizing factor. 

Sinai c~3~ was first to study the properties of the map  T in detail. He 
proved that T is hyperbolic, i.e., has nonzero Lyapunov exponents a.e., and 
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constructed stable and unstable fibers at a.e. point x ~ M j .  He also 
developed a proof of ergodicity of 7", which was later improved in ref. 2. In 
addition to ergodicity, the mixing and K-property of T were established in 
refs. 13 and 2, and its Bernoulli property was proved in ref. 8. Another 
proof of ergodicity, which worked for the multidimensional Lorentz gas as 
well, was provided in ref. 14. Sinai t~3~ derived a formula for the 
Kolmogorov entropy of the map T, which was later re-proved and studied 
in ref. 7. In particular, it was shown in ref. 7 that the entropy h(T) has the 
following asymptotics as r---, 0: 

h(T) = 2 In(1/r) + O( 1 ) 

Markov partitions for the map T were constructed in ref. 4. Those provide 
a symbolic representation of T by topological Markov chains with coun- 
table alphabet. Based on Markov partitions, it was later shown in ref. 6 
that the topological entropy of T is infinite. In particular, the natural 
ergodic measure v on M~ is not a measure of maximal entropy, since its 
entropy is finite. The statistical properties of the map T were studied in 
ref. 5: a stretched exponential bound on the decay of correlations was 
established and the central limit theorem along with its weak invariance 
principle was proved. Note that the periodic Lorentz gas with no horizon 
apparently displays a "superdiffusive" behavior, as was conjectured and 
explained in ref. 1. 

We will use the "cell structure" of the surface M~ described in detail 
in refs. 4 and 10. The map T has a countable number of domains of con- 
tinuity which accumulate at a finite number of singular points, at which the 
time of the first return is infinite. We will call such points supersingular. For 
example, four points on the circle OQ with coordinates (0, _+r) and ( _+r, 0) 
and with ~o= +M2 are such supersingular points (they produce eight 
supersingular points in M~). There might be more supersingular points for 
small radius r. The domains of continuity of the map T (we call them cells) 

rh.,.--.'--, S / ~?=~r12 

/ / /  
/~/ / 

I/A' 0 / /  ",~ 

Fig. 1. A supersingular point S and a cell A,, near it. 
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L.. TL _1 

Fig. 2. The outgoing vectors form the cell A.. 

form a fairly standard structure in the neighborhood of every supersingular 
point, independent of r (the structure is the same if the scatterers are not 
necessarily circles, but smooth convex domains on the torus). The structure 
of cells is shown in Fig. 1. We denote cells A,,, 17/> 2, where n means that 
the first return time is about ii on the cell A,,. Figure 2 shows which points 
are included in the cell A,,. The sizes of the cells are shown in Fig. 1. Here 
O(n -~) means a value between c - i n  -~ and cn -~ for some c >  1. Since 
there are only a finite number of supersingular points, we can assume that 
the value of c is the same for all of them. 

The inverse map T-~  also has a countable number  of domains of con- 
tinuity, which accumulate at the supersingular points. They have a sym- 
metric form shown by dashed lines in Fig. 1. We denote them by A~,, n >~ 2, 
and call them "inverse cells". Clearly, any cell A ,  is mapped by T onto an 
inverse cell A~, with the same value of n but located in the neighborhood 
of another supersingular point. Figure 3 shows how A, is mapped onto A', 
under T. 

It is shown in refs. 4 and 5 that unstable directions for the map T are 
continuous at every supersingular point and the limit (ds"/drp") of the 

E 

I ,  / "~I'~ "~. 
T@) TO,) 

Fig. 3. The image of A,, under the map T is a reverse cell, A',,. 



Measures for Periodic Lorentz Gas 197 

unstable directions is positive and finite: 0 <d~o"/ds"< oo. Likewise, the 
limit of the stable directions at every supersingular point is negative and 
finite: 0 < d~oS/dsS< -oo.  Therefore, we have transversality of stable direc- 
tions and increasing sides of the reverse cell A', and transversality of 
unstable directions in the neighborhood of supersingular point and 
decreasing (long) sides of the cells A,,. Thus it is clear from Fig. 3 that for 
all points x c A ,  the one-step expansion in the unstable direction has a 
factor 0(n3/2), and one-step contraction in the stable direction has a factor 
0(n3/2). 

We will study points x e M~ such that Tix belongs to some cell A,,, 
(near some supersingular point) with large ni = ni(x)> 0 for every i e 7/. In 
other words, we will study points whose trajectories stay very close to 
supersingular points all the time. It is clear that the positive Lyapunov 
exponent of any such point is 

A + ( x ) =  lim 3 t t - ~  2-I ~ lnn~(x)+O(1) 
i = l  

= lim 3 t ~  ~ In n_g(x) + O(1) (1) 
i = l  

In particular, if both limits in (1) are infinite, then A + ( x ) =  oo. Similar for- 
mulas hold for the negative Lyapunov exponent, A _(x). 

In virtue of (1), any point xeM~ such that ng(x) ~ oo as [il ~ oo has 
infinite Lyapunov exponents. Such points form a Cantor-like nonempty set 
concentrated in the vicinity of supersingular points. Obviously, this set 
does not support any finite invariant measure, because every trajectory in 
it is attracted by supersingular points. 

However, there are points x e Ml for which the sequence {ni(x)} has 
infinity as a limit point (both as i--* oo and i ~  - o o ) ,  but that sequence is 
"recurrent", i.e., for every n >12 there are asymptotic frequencies 

p,~(x) = i-lim~. # {ie [ 1, I]  I: n+_i(x) = n} (2) 

and E , , p , + , ( x ) ' = E , p , 7 ( x ) =  1 If the sequences {p~(x)} and {p,7(x)} 
decay slowly enough, then the corresponding point x will have infinite 
Lyapunov exponent. It is clear that the following condition is sufficient for 
infinite Lyapunov exponents: 

~" p,+(x)In n = oo (3) 
ii 

822/83/I-2-14 
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3. MEASURES WITH INFINITE LYAPUNOV EXPONENTS 

Here we construct ergodic measures for the map T with finite and 
infinite Kolmogorov entropy, such that a.e. point x ~ M ,  with respect to 
those measures has infinite Lyapunov exponents. 

The construction starts with the following observation. There are 
positive constants c >  1 and 17. >1 1 such that every cell A,, with n > n ,  
intersects all inverse cells ,4',,, near the same supersingular point with 
c x / ~ < m  ~< c-2n 2, so that both longer sides of A,, cross both longer sides 
of A',,,, (as shown in Fig. 3). This observation is based on Figs. 1 and 3 and 
was made in ref. 4. 

Let 17 o, n, ,  112 .... be a sequence of integers such that n,. > 17. for all i > 0 

and c ~ ~< ni§ c-2n,. -" for all if> 0. Then there is a sequence of cells A,,, 
such that `4,, c~ T- 'A, , , . ,  r  for all i>~0, and the intersection 

r  

N -i  T A,,, 
i = O  

is a monotone curve in the cell `4,., which stretches from its top (short) 
side to its bottom (short) side. 

The same is true for inverse cells: there is a sequence of inverse cells 
A',, such that the intersection 

N TiAI,i 
i = 0  

is a monotone curve stretching from the top short side of AI, o to its bottom 
short side. 

Consequently, for any double-infinite sequence of integers {n~}, 
- o o  < i <  oo, such that n j > n ,  and c x/~,.~< n;+, ~< c-2n~ for all i ~Z  (note 

that this condition is symmetric: c ~ ~< 17;_ ~< c-2n,. -') there is a sequence 
of cells {A,,,} such that the intersection 

T -~A,,, (4) 
i = ,:r__ 

is a single point in the cell A,, o. 
We now fix an increasing sequence of integers, No, N~, N2 ..... such 

that N;+~ = [c -4N~]  + 1 for all i i> 0 and N O >> 17.. It has the following two 
properties: 

(i) For any double-infinite sequence {n~}, - oo < i <  o0, such that 
ni=N,.,~ with some s(i)~77 +, I s ( i ) - s ( i+l ) l<~l  for all i~Z.  Note the 
intersection (4) is a single point in the cell A,,,,. 
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(ii) For  all i>~0 

Ni>/c -412i-  1) No2, 

so that if No is large enough, the sequence {N;} grows at the following 
superexponential rate: 

Ni>/ 2 2i (5)  

The set of double-infinite sequences { N,} described by condition (i) is 
a topological Markov chain with a countable number of states, which can 
be identified with N~, N~_ ..... The allowed transitions from every state N`. 
are the ones to N`. itself and to the two neighboring states, N;_ ~ and N;+ ~. 
The only exception is the first state, N~, from which the transitions to itself 
and to N2 are allowed. 

We denote the collection of the above double-infinite sequences {n`.} 
by /21. In virtue of the property (i) every sequence co={n` .}sO t 
corresponds to a point x = x(r M t defined by the intersection (4). The 
set of points 

O,,M= {x(~o): cocO:} 

is a closed Cantor-like subset of M~ invariant under T, i.e., Tf2~,M= 
T-Lf21. M=t'21.M. 

Let p~ be a Markov measure on the symbolic space f2~ defined by the 
following transition probabilities: ~z .̀+ i.`.= 1/3 for all i~> 1, ~`._ t, ̀ . = 2/3 for 
all i>~2, and n~. 1=2/3. (Here n`... i stands for the probability of transition 
from Nj to N`..) This Markov measure is ergodic and mixing; its stationary 
distribution p(Ni)= 1/2`. for i~> 1. 

The measure it~ projected from f2~ down to M generates an ergodic 
measure v~ for the map 7", which is concentrated on 12~, M- By the ergodic 
theorem, for v~-almost every point x ef2~.M the asymptotic frequencies 

+ . p2(.x) defined by (2) exist and are equal to p,~(x)= 1/2" if n = Ni for some 
i>i 1 and zero otherwise. It is then a simple calculation based on (3) and 
(5) that the Lyapunov exponents are infinite a.e. in M with respect to the 
ergodic measure v~ 

p,~(x) In n = ~ p~,, In N`.~> 2 2-`. In 2z'= oo 
11 `. i 

The measure v~ constructed above has a finite entropy. Indeed, it is a 
Markov measure, and so its entropy (see, e.g., ref. 11) is given by 

h = - ~ p`. Y' rr 0 log 7r 0 (6) 
i j 
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where rt 0. are the transition probabilities and p; is the stationary distribu- 
tion. In fact, since for every state i only two transition probabilities z%. are 
positive, as defined above, we have h ~< log 2 for the measure lq .  

The above construction of the Markov measure/x t can be modified so 
that its entropy will be infinite and Lyapunov exponents will be still infinite 
a.e. We outline the construction below. 

We now consider all the double-infinite sequences { n;}, - oo < i < or, 
satisfying n ; > n ,  and c x / ' ~ n i +  1..~c -ni for all iEZ,  as defined above. 
We denote the set of these sequences by ~2. Obviously, f2_, is a topological 
Markov chain with a countable number of states which can be identified 
with n ,  + 1, n ,  + 2 ..... We will number these states by 1, 2 .... so that the ith 
state is identified with n ,  + i. Every sequence o)= {hi} es corresponds to 
a point x =x (co )e  Mi defined by the intersection (4). The set of points 

&,,M--  {x(co): ~o ~ r2_,} 

is a closed Cantor-like subset of M~ invariant under T, i.e., TY22. M= 
T-'f22.  M = I2z M. 

We are going to find an ergodic and mixing Markov It_, on s with 
transition probabilities rc 0 and with stationary distribution p; satisfying the 
following two conditions: 

(iii) Its entropy given by (6) is infinite. 

(iv) One has 

Y', Pi In(n, + i) = oo 
i 

so that, by condition (3), the projection of the measure P2 on M~ will have 
infinite Lyapunov exponents a.e. 

The existence of Markov measures satisfying (iii) and (iv) is not based 
on the dynamics of the Lorentz gas or billiards, and we only sketch a 
proof. It is clear that (iv) is always satisfied if the probabilities p; decay 
slowly enough, for example, ifp; > const- (i In-' i ) -  ~. Next, we will take care 
of the condition (iii). 

Let a probability distributions ][Pgl[ be given. We will show how to 
find a transition matrix H =  [[zr0] [ preserving the distribution J]p;[], so that 
for every state i/> 1 all the positive transition probabilities n o > 0 satisfy 

c ( n ,  .a:_ i)1/2 .~ n, + j <~ c-2(n, + i)2 (7) 

in which case the Markov measure defined by [[Pil[ and 11z%.[[ will be con- 
centrated on g-22. For  any k >~ I denote 

qk=Pk- -Pk+]  + P ~ + 2 - - P ~ + 3 +  "'" 
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We assume that the probabilities p; decrease monotonically, 
P~ > P 2 >  - " ,  and that 

�89 <~ qk <-N ~pe (8) 

for every k ~> 1. To assure this, it is enough to assume that 

1 ,<Pk+,-  --Pl,......_2+I 4 1 (9) 
3 Pk+] --Pk 

for all k ~> 1, which simply means that {Pk} decays without abrupt drops. 
Now, for any k>~ 1 define a matrix of transition probabilities 

/7(k) = ILn/j(k)ll by gi;= 1 for all 1 <~i<k,  n k k = q k / p k ,  n~.i+ 1 =q i+ l /P i  for 
all i/> k, and hi. ~_ ~ = qi/Pi for all i i> k + 1. It is easy to check that all H ( k )  
preserve the same distribution IlPill. Now, let 1 =k ]  < k 2 < k 3 <  ..- be a 
sequence of numbers such that k,,, = [&n] for some sufficiently large ~> 2. 
We then define the matrix of transition probabilities 17= lift0.11 by 

H =  H ( k l )  . H(k2) '  H(k3) " " 

(here every entry g,~ requires only a finite number of multiplications). If 
and n ,  are large enough, this matrix clearly satisfies (7). Now, due to (8) 
all the positive entries of the matrices H(k) ,  k >/1, are not smaller than 1/4. 
In that case, the entropy of the conditional distribution, 

h(i) = - ~ ~u log n 0- 
J 

increases to infinity as i--~ ~ .  Moreover, it is bounded below by some 
increasing sequence h ( i ) ~ H i ,  H i - ~  as i - - ~ ,  independent of the 
stationary distribution IIp,'ll. (The sequence H i depends only on the value 
of g which is only determined by c and n ,  in (7). Finally, we can find a 
probability distribution ILPill satisfying (9) and such that ~ i p i H ~ = ~ .  
(Obviously, such a distribution always exists, whatever the increasing 
sequence {Hi}) .  Hence the condition (iii) is provided. 

The Markov measure ~t2 satisfying conditions (iii) and (iv) projected 
from O2 down to M] induces a measure v2 concentrated on O2, M. A.e. 
point with respect to v 2 has infinite Lyapunov exponents. This measure has 
infinite entropy, and so it is a measure of maximal entropy. Note that for 
every mixing subshiff of finite type with finite entropy (]21 the measure of 
maximal entropy is a Markov one, and its transition probabilities are 
positive for all (topologically) allowed transitions between states. The 
measure of maximal entropy that we have constructed here is also a 
Markov one, but some of its transition probabilities are zero even for 
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topologically allowed transitions. This means that we did not use all of  the 
available topological richness of  the chain I2= defined above. The transitions 
that we have used were enough to make the entropy of the Markov measure 
infinite. 
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